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Abstract

Temperature-dependent phase-lags are incorporated in the dual-phase-lag (DPL) model to fully describe the ex-

perimental data of femtosecond (fs) laser heating on gold ®lms of various thicknesses in the sub-micron range. An

explicit ®nite di�erence algorithm is developed to perform the nonlinear analysis, which recovers the Crank±Nicholson

stability criterion in the special case of Fourier di�usion. The exponents in the temperature-dependent thermal prop-

erties are determined by minimizing the mean error between the numerical and the experimental results. The lagging

model with temperature-dependent thermal properties enables a consistent description of all the available experimental

data for ultrafast laser heating on gold ®lms. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The unique capability of short-pulse lasers lies in its

high-precision control of heating times and locations in

thermal processing of materials. Due to the short

duration in local heating, the short-pulse energy depo-

sition e�ectively con®nes the heat-a�ected zone within

the pre-designed physical domain, resulting in well-

controlled thermal processes, such as the localized phase

change and constituents, doping in metallic ®lms and

bond-tailoring for applications to microbiological tis-

sues. Developments of the high-power short-pulse lasers

have matured into several innovative technologies, in-

cluding structural monitoring of thin metal ®lms [1,2],

laser micro-machining [3] and patterning [4], structural

tailoring of micro®lms [5], and laser synthesis and pro-

cessing in thin-®lm deposition [6]. In addition to the

development of new technologies, most importantly, the

femtosecond (fs) laser has become an e�ective tool for

investigating the fundamental process of heat transport

in micro-scale [7±12]. The theoretically derived and ex-

perimentally veri®ed phonon±electron coupling factor

for metal ®lms, for example, has placed the hypothetical

microscopic two-step model [13,14] on a ®rm physical

basis. The thermal lagging model describing the pico-

second (ps) heat transport in metal ®lms [15±19], as

another example, has introduced two phase-lags whose

engineering values must be determined from the exper-

imental data employing the fs lasers. While more ag-

gressive applications are attempted and new physical

models are developed for describing heat transport in

di�erent micro-systems, the role that high-power short-

pulse lasers play in advanced technologies is expected to

grow drastically.

During ultrafast heating on metallic ®lms, the tem-

perature change is converted from the re¯ectivity change

measured optically on the ®lm surfaces [7±12]. Due to

much smaller heat capacity of the electron gas than the

metal lattice, the temperature rise during the ®rst few ps

is mainly caused by the hot electron gas rather than the

metal lattice. Major focus in modeling the ultrafast

process of heat transport, therefore, has been placed on

the electron gas whose temperature becomes physically

meaningful after the ®rst few hundred femtoseconds [9±

12]. Development of the microscopic two-step model is

an example at hand. Optically, the maximum re¯ectivity

change varies linearly with laser ¯uence. The maximum

temperature rise of the electrons, in addition, is almost

proportional to laser ¯uence in the heating history. In
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modeling the temperature change in the electron gas

(Te), therefore, the normalized re¯ectivity change (with

respect to its maximum value) is assumed to be propor-

tional to the normalized temperature change of electrons.

For an ultrafast heating on metal ®lms, such a propor-

tional relation holds as long as the electron temperature

is lower than the Debye temperature. Based on this as-

sumption, in fact, the phonon±electron coupling factor

(G), an intrinsic thermal property characterizing the ul-

trafast thermal energy exchange between electrons and

phonons, was determined for nine metallic elements [9].

The dual-phase-lag model (DPL) [15±19], alternatively,

describes the thermal relaxation and thermalization be-

haviors that are interweaving in the ultrafast process of

heat transport in the electron gas. Two intrinsic delay

times, called phase-lags denoted by sT and sq, were in-

troduced to account for the ®nite times required for the

thermal equilibrium (sT) and e�ective collisions (sq) be-

tween electrons and phonons to take place

q�r; t � sq� � ÿkrT �r; t � sT�first-order model

) q�r; t� � sq

oq
ot
�r; t�

� ÿk rT �r; t�
�

� sT

o
ot
rT �r; t�

�
: �1�

In relation to the micro-structural parameters in the

parabolic two-step (PTS) model, at a constant tem-

perature

sT � C1

G
; sq � 1

G
1

Ce

�
� 1

C1

�ÿ1

: �2�

Similar correlations of sT and sq exist when describing

di�erent behaviors of energy carriers in di�erent types of

conductors. In terms of the two lagging times, to date,

the DPL model has described seven microscopic and

macroscopic models in the same framework of thermal

lagging [18,19]. They include the hyperbolic two-step

models for metals [10], the phonon scattering model for

insulators, semiconductors and dielectric ®lms [20], the

three-equation model describing the additional thermal

relaxation of internal energy [21], heat transport in

amorphous media [22] and, of course, the classical CV-

wave model [23,24]. Instead of tracking di�erent micro-

structural interactions in di�erent types of conductors,

the phase-lag concept focuses attention on the ®nite

times that are required for the various micro-structural

interactions to take place. In fact, evidenced by the ex-

istence of the thermalization time and the relaxation

time in the phonon±electron interaction model and the

normal and umklapp relaxation times in the phonon

scattering model, such a time-concept has already been

implied. The characteristic times governing the various

physical processes of energy transport can be derived in

the various micro-scale models, but the DPL model

implements these characteristic times in a concise fash-

ion. The correlations of sT and sq to the various micro-

structural parameters, exempli®ed by Eq. (2) in corre-

lation to the phonon±electron interaction model, are to

extract the physical source for time delays from the

various physical processes in micro-scale. During the

phonon±electron interactions, the phonon±electron

coupling factor (G) stands for the energy exchange

Nomenclature

C volumetric heat capacity [J mÿ3 Kÿ1]

Ccv Cattaneo±Vernotte thermal wave speed

[m sÿ1]

E mean error of the normalized temperature

change, dimensionless

G phonon±electron coupling factor [W mÿ3 Kÿ1]

J laser ¯uence [J mÿ2]

k thermal conductivity [W mÿ1 Kÿ1]

L ®lm thickness [m]

M exponent, dimensionless

N exponent, dimensionless

P exponent, dimensionless

q one-dimensional heat ¯ux [W mÿ2]

R re¯ectivity, dimensionless

S energy absorption rate [W mÿ3]

T temperature [K]

T0 initial temperature [K]

U exponent, dimensionless

t physical time [s]

x space variable [m]

Greek symbols

a thermal di�usivity [m2 sÿ1]

d laser penetration depth [m]

g ampli®cation factor for heat ¯ux [Wn mÿ2n]

j wave number [mÿ1]

s phase lag [s]

n ampli®cation factor for temperature [K1=n]

Subscripts and superscript

e electron

exp experimental

j nodal number of the spatial grid

l lattice

max maximum value

n nodal number of the time grid

num numerical

p pulse

q heat ¯ux vector

T temperature gradient

0 reference state
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between phonons and electrons per unit volume per unit

time. Heat ¯ow arrives at such a compound system at

time t. The temperature gradient, across the same vol-

ume, can only be established later, at t � sT, because it

requires a ®nite duration, sT � Cl=G, to raise the tem-

perature of the metal lattice (with the heat capacity per

unit volume being Cl) by one degree. Heat ¯ow leaves

the compound system at time t � sq, after another ®nite

duration, sq � �1=Ce � 1=Cl�ÿ1=G
, which is required for

e�ective collisions between phonons and electrons to

take place for heat transport. Clearly, a parallel assem-

bly is assumed between the electrons and the phonons,

and the phase lag sq refers to the ®nite time required to

raise the temperature of the compound system (with the

e�ective heat capacity per unit volume being (1/Ce + 1/

Cl)
ÿ1) by one degree. Allocating sT to address the delay

behavior in establishing the temperature gradient and sq

to address the delay behavior in heat-¯ow departure is a

unique feature in the DPL model, which has been sup-

ported by the successful correlations to seven micro-

scopic models as well as a rigorous derivation in the

framework of the nonequilibrium and irreversible ther-

modynamics [18].

The concept of temperature employed in all the mi-

croscopic models, including the DPL model, may have a

di�erent context from the one de®ned on the basis of

thermal equilibrium. Especially during the sub-ps tran-

sient in metals where thermal equilibrium remains dis-

tant, the temperature used in these models may only

refer to a fast-varying thermal disturbance propagating

in the conducting system. Although, numerous e�orts

have been made to distinguish the nonequilibrium tem-

perature from the local-equilibrium temperature [18,25],

the nonequilibrium temperature remains to be de®ned in

an operational sense. In the absence of a device that is

su�ciently fast to measure the ``temperature'' directly in

the domain of ps, in fact, relating the normalized tem-

perature change to the directly measured normalized

re¯ectivity change is a unique contribution of the recent

development of the microscopic two-step model [7±12].

In this regard, the change of temperature may be a more

physical index than the temperature itself to measure the

strength of the thermal disturbance in ultrafast heating.

The two phase-lags, sT and sq, are central quantities

in Eq. (1) that replace the classical FourierÕs law in

coupling with the energy equation. For gold, their ef-

fective values averaging over a nominal range of tem-

perature were determined as sT � 90 ps and sq � 8:5 ps

[18]. These values, however, aim to describe the overall

behavior of thermal lagging during the ps transient, but

reveal no detailed variations of phase-lags with tem-

perature. As a result, signi®cant deviations may result

when using these values in predicting the rear-surface

temperature or surface temperatures in general for

thinner ®lms. This work aims to broaden the analysis by

accommodating the temperature-dependent thermal

properties in describing the ultrafast process of heat

transport in metal ®lms. The problem becomes highly

nonlinear due to the temperature-dependent lagging

behavior, necessitating a numerical study of the fast

transient phenomena. An explicit ®nite di�erence al-

gorithm shall be developed to quantify the lagging

temperature developed at short times. It employs a

mixed formulation, specially tailored to recover the

Crank±Nicholson stability criterion in FourierÕs law as

the lagging behavior diminishes. With the temperature

dependency thus incorporated, it will be shown that the

DPL model accurately describes the available exper-

imental data for ultrafast heating on gold ®lms of vari-

ous thicknesses.

2. Ultrafast heating on metals

Fs laser heating has been modeled by the energy

absorption rate in the thin ®lm [9±12,17±19]. As the ®lm

thickness is of the order of sub-microns in most cases,

which is much smaller than the characteristic dimension

of the laser-heated spot, in addition, the one-dimen-

sional formulation has been adopted in analyzing the

ultrafast processes of thermal relaxation and thermal-

ization. The DPL model shown by Eq. (1) can be re-

duced to

q�x; t� � sq�T � oq
ot
�x; t�

� ÿk�T � oT
ox
�x; t�

�
� sT�T � o2T

oxot
�x; t�

� �3�

in this case, which is to be coupled with the one-di-

mensional energy equation

ÿ oq
ox
�x; t� � S�x; t� � C�T � oT

ot
�x; t� �4�

to describe the temperature (T) and heat ¯ux (q) distri-

butions in the thickness (x)-direction of the ®lm. Ther-

mal conductivity (k), volumetric heat capacity (C),

phase-lag of the temperature gradient (sT), and phase-

lag of the heat ¯ux vector (sq) in Eq. (4) are functions of

temperature during the heating process. In contrast to

the two-step model, where separate equations are used

for describing the individual temperatures of the elec-

tron gas and the metal lattice [9±12], Eq. (4) describes

the electron temperature alone with e�ect of phonon

coupling absorbed in the e�ective thermal properties k,

C, sT and sq [15±19]. Thermal properties of the metal

lattice have de®nite in¯uences on the two phase-lags,

exempli®ed by Eq. (1) at a constant temperature. Ef-

fective heat capacity results from the serial assembly of

electrons and phonons, C � Ce � Cl, while thermal

conductivity (k) remains to be that of the electrons since

conduction e�ect through the sub-micron thickness is

neglected in the metal lattice.
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The energy absorption rate, S�x; t�, results from the

rather complicated beam±material interaction [15,18]

S�x; t� � 0:94J
1ÿR
tpd

� �
exp

�
ÿ x

d
ÿ 1:992 tÿ 2tp

�� ��
tp

�
: �5�

The time exponential replaces the Gaussian distribution

employed by Qiu and Tien [9], with the constant 1.992

determined from the normalized autocorrelation func-

tion of the 96 fs laser pulse (tp � 96 fs) [15,17±19]. The

initial time is shifted to ±2tp to re¯ect the full width at

half maximum (FWHM) pulse duration, with the energy

absorption rate now peaking at time zero.

The e�ective phase-lags (sT and sq) and volumetric

heat capacity (C� Ce + Cl) in the DPL model can be

calculated exactly from Eq. (2) at a constant temperature.

For gold at room temperature, T0 � 300 K, for exam-

ple, Ce � 2:1� 104 J mÿ3 Kÿ1; Cl � 2:5� 106 J mÿ3 Kÿ1,

and G � 2:8� 1016 W mÿ3 Kÿ1 [9], which result in sT0 �
89:286 ps; sq0 � 0:7438 ps, and C0 � 2:5� 106 J mÿ3 Kÿ1

(�Cl, since Ce is smaller than Cl by two orders of mag-

nitude). Comparing to the averaged values of sT � 90 ps

and sq � 8.5 ps over a nominal range of temperature

[15,18,19], the value of sT remains approximately the

same while the value of sq at room temperature is lower

by approximately one order of magnitude. Temperature

dependence of the e�ective thermal properties needs to be

modeled in detail as the ®lm temperature signi®cantly

varies in high-power laser heating. For this purpose, we

assume the following polynomial forms:

sT�T � � sT0

T
T0

� �M

; sq�T � � sq0

T
T0

� �N

;

k�T � � k0

T
T0

� �P

; C�T � � C0

T
T0

� �U

;

�6�

where the exponents M, N, P, and U are to be deter-

mined by minimizing the mean error between the nu-

merical and the experimental results.

Two boundary conditions and two initial conditions

are required to solve the temperature and heat ¯ux from

Eqs. (3) and (4), which are called the mixed formulations

in the DPL model. Due to the complicated relationship

between the temperature and the heat ¯ux vector in

thermal lagging, as shown by Eq. (3), the mixed for-

mulation is particularly useful for problems involving

¯ux-speci®ed boundary conditions. No energy loss is

expected to occur from the ®lm surface during the ps

transient. Consequently, the insulated boundary con-

ditions are imposed at both the front (x � 0) and rear

(x � L) surfaces of the ®lm:

q � 0 at x � 0 and x � L: �7�
The initial temperature, at t � 2tp, is assumed to be T0,

while no heat ¯ow exists prior to laser heating

T � T0 and q � 0 at t � ÿ2tp: �8�

3. Finite di�erencing

Temperature dependency shown by Eq. (6) intro-

duces strong nonlinearity into the problem, Eqs. (3)±(5)

subjected to the boundary and initial conditions in Eqs.

(7) and (8). A special ®nite di�erence algorithm has

been developed to solve the nonlinear problem [25].

The backward di�erence in space is ®rst applied to the

®rst-order derivatives with respect to x in Eqs. (3) and

(4):

oT
ox

� �n

j

� T n
j ÿ T n

jÿ1

Dx
;

oq
ox

� �n

j

� qn
j ÿ qn

jÿ1

Dx
: �9�

The backward di�erence, in time, is then applied to the

mixed-derivative term, (o2T=oxot), and (oq=ot) in Eq. (3)

o2T
oxot

� �n

j

� T n
j�1 ÿ T n

jÿ1 ÿ T nÿ1
j�1 � T nÿ1

jÿ1

2DxDt
: �10�

The ®rst-order derivative of temperature with respect to

time, (oT=ot) in Eq. (4), at last, is approximated by the

forward di�erence in time

oT
ot

� �n

j

� T n�1
j ÿ T n

j

Dt
: �11�

Substituting Eqs. (9)±(11) into Eqs. (3) and (4) renders

two ®nite di�erence equations to be solved for the two

unknowns, T n
j and qn

j . The stability and convergence

criteria for this algorithm can be obtained by performing

the von Neumann eigenmode analysis [26,27]. Assuming

the error propagation modes for the lagging temperature

and heat ¯ux in the following form:

T n
j � nn exp ij�jDx�� �;

qn
j � gn exp ij�jDx�� � with i �

�������
ÿ1
p �12�

the two di�erence equations can be solved explicitly for

the ampli®cation factors n and g. To ensure stable and

convergent solutions of T n
j and qn

j , it is required that

jnj < 1 and jgj < 1, which can be combined and simpli-

®ed to give

Dx P

��������������������������������
2aDt 2sT � Dt� �

2sq � Dt

s
: �13�

Under a prescribed time increment (Dt), Eq. (13) dictates

the minimum space increment (Dx) that must be fol-

lowed to achieve the stable and convergent solutions

according to the ®nite di�erence algorithm described

in Eqs. (9) and (11). In the case of Fourier di�usion,

sT � sq [15,18], obviously, Eq. (13) reduces to the

familiar Crank±Nicholson stability criterion. In the case

of sT � 0, as another example, Eq. (13) reduces to

Dx
CcvDt� �

1����������������������������������
1� �1=2��Dt=sq�

p with Ccv �
�����
a
sq

r
�14�

1728 D.Y. Tzou, K.S. Chiu / International Journal of Heat and Mass Transfer 44 (2001) 1725±1734



which is the stability and convergence criteria for the

thermal wave model in the present scheme, with Ccv

standing for the ®nite speed of heat propagation.

At time t � nDt, the thermal properties in Eqs. (3)

and (4) are calculated from the temperature obtained at

the previous time, t � �nÿ 1�Dt. The ®nite di�erence

form of the term sq�T �oq=ot in Eq. (3), for example, is

sq�T � oq
ot

� �n

j

� sq0

T
T0

� �N
" #n

j

oq
ot

� �n

j

� sq0

T nÿ1
j

T0

 !N
qn

j ÿ qnÿ1
j

Dt

 !
: �15�

The initial values of sT0; sq0; k0 and C0 (at T� T0) are

used for calculating the temperature distribution at

t � Dt. The new temperatures are then used to calculate

the new values of thermal properties at each node ac-

cording to Eq. (6), based on which the calculation is

advanced to t � 2Dt. This procedure continues until the

prescribed ®nal time is arrived. In each time step, based

on the updated value of a (º k/C), the minimum space

increment is calculated at each node according to Eq.

(13). Maximum in these minimum increments is then

selected as the space increment to assure a global satis-

faction of the stability and convergence criteria.

Accuracy of the ®nite di�erence calculations per-

formed in this work is ensured by continuous halving of

the time increment, and, consequently, adjusting the

space increment according to Eq. (13), until a uniform

convergence of the numerical solutions are achieved for

both temperature and heat ¯ux. The results shown be-

low employ the value of Dt � 0.85 fs, resulting in a space

increment of the order of 5 nm, depending on the local

temperatures established during the short-time transient.

The Cauchy norm between successive halving is less

than one percent in all cases.

4. Numerical results

The ®nite di�erence scheme described in Eqs. (9)±(11)

and the stability criterion established in Eq. (13) are

®rst examined by the analytical solution for gold

with constant e�ective thermal properties, a � 1:2�
10ÿ4 m2 sÿ1; k � 315 W mÿ1 Kÿ1; sT � 90 ps, and sq �
8:5 ps [18]. The results are displayed in Fig. 1, along with

the experimental results obtained in [8,12]. At the front

surface (x � 0) of a 0.1 lm gold ®lm, the temperature

change is normalized by the maximum value that occurs

during the short-time transient. The resulting normal-

ized temperature change is proportional to the normal-

ized surface re¯ectivity measured directly in the

experiments. For Dt � 0.85 fs, the ®nite di�erence

results are obtained by the use of Dx � 5 nm, which

satis®es the stability criteria shown by Eq. (13),

Dx P 4.947 nm. The ®nite di�erence results agree very

well with the analytical result obtained by the Riemann-

sum approximation, justifying the accuracy of the ®nite

di�erence scheme developed in Eqs. (9)±(11) and the

stability and convergence criteria shown by Eq. (13).

Temperature-dependent thermal properties: The DPL

model with constant phase-lags is able to describe the

temperature change at the front surface of the 0.1 and

0.2 lm gold ®lms [15,17±19]. For describing the tem-

perature changes at the rear surfaces, as well as the

surface temperatures in gold ®lms of other thicknesses,

however, re®ned mechanisms such as the temperature

dependence of thermal properties on the heating history

need to be included [15]. A consistent description de-

veloped in this fashion necessitates the determination of

the exponents M, N, P and U shown in Eq. (6), and the

extended use of their same values for gold ®lms of the

various thicknesses.

The normalized temperature changes at the front

surface (x � 0) of the 0.1 lm ®lm are used to de®ne the

mean error between the numerical and the experimental

results in [12]

E�M ;N ; P ;U�

�
P@

n�1
DT �x�0;t�tn ;M ;N ;P ;U�

DTmax

� �
num
ÿ DT �x�0;t�tn�

DTmax

� �
exp

� �
@ ;

�16�
where tn refer to the n-instants of time at which the ex-

perimental results are extracted, @ denotes the total

number of data points taken for comparisons, and the

Fig. 1. Normalized temperature change at the front surface of a

gold ®lm of thickness 0.1 lm: a � 1:2� 10ÿ4 m2 sÿ1; k � 315

W mÿ1 Kÿ1; sT � 90 ps; sq � 8:5 ps, and Dx � 5 nm in the

®nite di�erence result.
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quantity (DT=�DT �max� exp is indeed (DR=�DR�max� be-

cause the directly measured quantity in the experiments

is the change of the surface re¯ectivity. Since the tem-

perature of the electron gas possesses a deterministic

physical meaning after the ®rst few hundred femtosec-

onds, a total of 19 data points (and hence n � 19) is

selected from the experimental curve [12] in Fig. 1 after

t > 0:6 ps (600 fs). The numerical results, and, conse-

quently, the mean error, depend on the values of M, N,

P and U that are selected in the numerical computations.

The desirable values of M, N, P and U should minimize

the mean error E [18], and consequently render a small

di�erence between the numerical and the experimental

results in an overall sense

oE
oM
� 0;

oE
oN
� 0;

oE
oP
� 0;

oE
oU
� 0: �17�

From an analytical point of view, Eq. (17) provides four

equations to be solved for the four parameters M, N, P

and U. Numerically, ®ne grids for M, N, P and U are

prepared to approximate the ®rst-order derivatives

shown in Eq. (17), resulting in the threshold values of

M � 0;N � 0:7; P � 0:6, and U � 0:001 for gold

sT�T � � sT0; sq�T � � sq0

T
T0

� �0:7

;

k�T � � k0

T
T0

� �0:6

; C�T � � C0

T
T0

� �ÿ0:001

:

�18�

Fig. 2 shows the typical contour patterns of E in the

U±N and P±M spaces that illustrate the minima of E at

these values. The phase-lag of the temperature gradient,

sT, appears to be temperature-independent (constant),

which is supported by Eq. (2) since the phonon±electron

coupling factor (G) and volumetric heat capacity of the

metal lattice (Cl) are temperature insensitive. The e�ec-

tive volumetric heat capacity, C�Ce + Cl, in addition,

turns out to be a weak function of temperature as the

exponent ±0.001 is close to zero. This behavior is also

supported by Eq. (2) as the volumetric heat capacity of

the electron gas (Ce) is approximately two orders of

magnitude smaller than that of the metal lattice (Cl), and

the value of Cl is much less temperature-dependent than

that of Ce [9]. These arguments, to repeat, can only be

viewed approximate because Eq. (2) is only valid at a

constant temperature.

Extended applications: Eq. (18) determined from the

experimental results at the front surface of a 0.1 lm gold

®lm is used in the DPL model to examine the tempera-

ture changes in gold ®lms of di�erent thicknesses, at

Fig. 2. Minimum values of the mean error E at: (a) (N, U)� (0.7, )0.001) for M � 0 and P � 0.6; (b) (M, P) � (0, 0.6) for N � 0.7

and U � )0.001.

Fig. 3. Normalized temperature change at the front surface of a

0.1 lm gold ®lm.
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both the front and rear surfaces where experimental data

are available in [8,12]. Since Eq. (18) describes the in-

trinsic properties of gold ®lms, it shall be consistently

used for all the ®lm thickness under consideration.

Fig. 3 shows the normalized temperature change at

the front surface (x � 0) of a 0.1 lm gold ®lm, calculated

by the ®nite di�erence scheme Eqs. (9)±(11) and Eq.

(13)) with the temperature-dependent thermal properties

shown in Eq. (18). The ®nite di�erence results agree well

with the experimental data in rapid thermalization,

t > 0:6 ps. The DPL model with temperature-dependent

thermal properties is comparable to the parabolic two-

step (PTS) model addressing the temperature-dependent

heat capacity of the electron gas [9]. Of the same

thickness (0.1 lm) but at the rear surface (x � 0:1 lm),

Fig. 4 shows the normalized temperature changes in

comparison with the experimental data. Satisfactory

agreement is reproduced, which is considered a great

improvement because the DPL model assuming constant

e�ective properties encountered di�culties in interpreting

the experimental data at the rear surface of the ®lm [18].

Employing the same temperature-dependent thermal

properties, Eq. (18), Figs. 5 and 6 show the normalized

temperature change calculated at the front (x � 0) and

Fig. 5. Normalized temperature change at the front surface of a

0.05 lm gold ®lm.

Fig. 6. Normalized temperature change at the rear surface of a

0.05 lm gold ®lm.

Fig. 4. Normalized temperature change at the rear surface of a

0.1 lm gold ®lm.

Fig. 7. Normalized temperature change at the front surface of a

0.2 lm gold ®lm.

Fig. 8. Normalized temperature change at the rear surface of a

0.2 lm gold ®lm.
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rear (x � 0:05 lm) surfaces of a thinner gold ®lm,

L � 0:05 lm. Although a larger deviation is observed at

the front surface, the normalized temperature changes

predicted by the DPL model are well within the

threshold of experimental uncertainties [8]. The nor-

malized temperature changes predicted by the DPL

model for a thicker gold ®lm of L � 0:2 lm are displayed

in Figs. 7 and 8. Again, a consistent use of Eq. (18)

describing the temperature-dependent thermal proper-

ties in DPL gives satisfactory results in comparing with

the experimental data at both the front and rear sur-

faces.

Rapid thermalization and relaxation result in a

more uniform temperature distribution in a thinner

®lm, as shown by Fig. 9 where the interior temperature

changes in each case are normalized with respect to the

corresponding maximum value occurring at the front

surface, DT=�DT �0max � DT=�DT �max at x � 0. The tem-

peratures at di�erent locations are close in the 0.05 lm

gold ®lm, Fig. 9(a), with the peaking time slightly in-

creasing with the distance from the front surface (a

larger value of x). The same trend is preserved for

temperature changes in a thicker ®lm, as shown in

Fig. 9(b) with L � 0:1 lm. A larger physical domain

enhances the transport process of phonon±electron re-

laxation, and hence there is a more pronounced lagging

behavior, as re¯ected by the larger temperature gradi-

ent existing in the thickness direction. The peaking time

also increases in the direction towards the rear surface

of the ®lm, which is more obvious than that shown in

Fig. 9(a) in a thinner ®lm.

5. Conclusion

The temperature-dependent thermal properties, in-

cluding the phase-lags describing the lagging behavior in

ultrafast heat transport, have been incorporated in the

DPL model for a consistent description of the thin-®lm

transient re¯ectivity. The temperature dependence is

determined by minimizing the mean error between the

numerical and experimental results of the normalized

temperature changes at the front surface of a 0.1 lm

gold ®lm heated by a 96 fs laser. The temperature-de-

pendent thermal properties thus determined are used

consistently to determine the normalized temperature

changes at both the front and rear surfaces of 0.05, 0.1,

and 0.2 lm gold ®lms. Rigorous examinations show that

the normalized temperature changes predicted by the

DPL model agree well with the experimental results,

supporting the temperature-dependent lagging behavior

in ultrafast laser heating on metal ®lms. In accuracy, the

DPL model accommodating the temperature-dependent

thermal properties is comparable to the parabolic two-

step model established on a di�erent physical basis. The

complicated phonon±electron interaction in space, al-

ternatively, may be interpreted in terms of the lagging

behavior in time. Thermal properties are determined in

the present work by minimizing the mean errors between

the model and the experimental results, which is in

essence an inverse analysis [28]. The level of agreements

shown in Figs. 3±8 already lies within the uncertainties

(15±20%) in this type of experiments, although the use of

mean square error may further improve the accuracy in

Fig. 9. Normalized temperature changes in the interior of the gold ®lm: (a) L � 0.05 lm; (b) L � 0.1 lm.
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describing the experimental curves. Such an inverse

analysis should not be confused with the curve ®tting

routines. To accurately describe the transient response in

gold ®lms of di�erent thicknesses and surfaces, most

importantly, the type of di�erential equations (describ-

ing energy transport) must be correct that properly ac-

commodates the thermalization and the relaxation

behaviors during the ultrafast transient. The two phase-

lags, sT and sq, appear as the coe�cients in front of the

highest order di�erentials in the DPL equation, which

consequently dictate the fundamental behavior of the

lagging response. Should the DPL equation be incorrect

in describing the fast transient response in gold ®lms,

adjusting their (sT and sq) values in the DPL equation

will not impel closer agreements with the experimental

results. The agreement shown in this work, therefore,

should not be viewed as a result of having more

parameters involved in the DPL model to ``®t'' the ex-

perimental data. This can be further elaborated by

considering the use of the CV-wave equation to interpret

an experimentally obtained smooth curve. A sharp

wavefront will always exist in the transient solution of

the CV-waves, regardless of the value of the relaxation

time chosen in the CV-wave equation. Although the CV-

wave model has one more parameter, namely the re-

laxation time, than the FourierÕs di�usion equation, in

other words, it can never predict a smooth curve unless

the transient time becomes much longer than the preset

relaxation time.

The stability and convergence criteria derived on the

basis of the mixed formulation is another feature in the

present work. These criteria can be extended to cover a

wide class of problems in microscale heat transport since

the DPL equation is in a general form that captures

seven di�erent types of energy equations in special cases.

As di�erent values of sT, sq, and a are taken from the

relations to the various microscopic properties in other

models, di�erent forms of the criteria are generated as a

natural consequence. The stability and convergence

criteria presented in this work for the Fourier di�usion

and CV-wave models are typical examples.

The ®nite di�erence analysis provided in this work

facilitates a direct study of multi-dimensional e�ects in

thin-®lm heating. Thermal lagging around microvoids or

sharp edges, and the resulting intensi®cations in the near

®led, for example, are re®ned mechanisms to be further

quanti®ed. This is an ongoing e�ort in the development

of the DPL model.

References

[1] J. Opsal, The application of thermal wave technology to

thickness and grain size of aluminum ®lms, in: Metalliza-

tion: Performance and Reliability Issues for VLSI and

ULSI, SPIE 1596 (1991) 120±131.

[2] A. Mandelis, S.B. Peralta, Thermal-wave based materials

characterization and nondestructive evaluation of high-

temperature superconductors: a critical review, in: R.

Kossowsky (Ed.), Physics and Materials Science of High

Temperature Superconductors II, Kluwer Academic Pub-

lishers, Boston, Massachusetts, 1992, pp. 413±440.

[3] J.A. Knapp, P. Bùrgesen, R.A. Zuhr (Eds.), Beam±solid

interactions: physical phenomena. Mater. Res. Soc. Symp.

Proc. vol. 157, Materials Research Society, Pittsburgh,

1990.

[4] D.J. Elliot, B.P. Piwczyk, Single and multiple pulse

ablation of polymeric and high density materials with

excimer laser radiation at 193 nm and 248 nm. Mater. Res.

Soc. Symp. Proc. vol. 129, Materials Research Society,

Pittsburgh, 1989, pp. 627±636.

[5] C. P. Grigoropoulos, Heat transfer in laser processing of

thin ®lms, in: C.L. Tien (Eds.), Annual Review of Heat

Transfer, vol. 5, Hemisphere, New York, 1994, pp. 77±130.

[6] J. Narayan, V.P. Gosbole, G.W. White, Laser method for

synthesis and processing of continuous diamond ®lms on

nondiamond substrates, Science 52 (1991) 416±418.

[7] H.E. Elsayed-Ali, T.B. Norris, M.A. Pessot, G.A. Mourou,

Time-resolved observation of electron±phonon relaxation

in copper, Phys. Rev. Lett. 58 (1987) 1212±1215.

[8] S.D. Brorson, J.G. Fujimoto, E.P. Ippen, Femtosecond

electron heat-transport dynamics in thin gold ®lm, Phys.

Rev. Lett. 59 (1987) 1962±1965.

[9] T.Q. Qiu, C.L. Tien, Short-pulse laser heating on metals,

Int. J. Heat Mass Transfer 35 (1992) 719±726.

[10] T.Q. Qiu, C.L. Tien, Heat transfer mechanisms during

short-pulse laser heating of metals, ASME J. Heat Transfer

115 (1993) 835±841.

[11] T.Q. Qiu, C.L. Tien, Femtosecond laser heating of multi-

layered metals ± I. Analysis, Int. J. Heat Mass Transfer 37

(1994) 2789±2797.

[12] T.Q. Qiu, T. Juhasz, C. Suarez, W.E. Bron, C.L. Tien,

Femtosecond laser heating of multi-layered metals ± II.

Experiments, Int. J. Heat Mass Transfer 37 (1994) 2799±

2808.

[13] M.I. Kaganov, I.M. Lifshitz, M.V. Tanatarov, Relaxation

between electrons and crystalline lattices, Sov. Phys. JETP

4 (1957) 173±178.

[14] S.I. Anisimov, B.L. Kapeliovich, T.L. Perel'man, Electron

emission from metal surfaces exposed to ultra-short laser

pulses, Sov. Phys. JETP 39 (1974) 375±377.

[15] D.Y. Tzou, A uni®ed ®eld approach for heat conduction

from micro- to macro-scales, ASME J. Heat Transfer 117

(1995) 8±16.

[16] D.Y. Tzou, The generalized lagging response in small-scale

and high-rate heating, Int. J. Heat Mass Transfer 38 (1995)

3231±3240.

[17] D.Y. Tzou, Experimental support for the lagging response

in heat propagation, AIAA J. Thermophysics Heat Trans-

fer 9 (1995) 686±693.

[18] D.Y. Tzou, Macro- to Micro-scale Heat Transfer: The

Lagging Behavior, Taylor & Francis, Washington, DC,

1997.

[19] D.Y. Tzou, Ultrafast heat transport: the lagging behavior,

in: Giga- to Terahertz Photonics, SPIEÕs 44th Annual

Meeting and Exhibition, 18±23 July, Denver, Colorado,

1999 (invited paper).

D.Y. Tzou, K.S. Chiu / International Journal of Heat and Mass Transfer 44 (2001) 1725±1734 1733



[20] R.A. Guyer, J.A. Krumhansl, Solution of the linearized

Boltzmann equation, Phys. Rev. 148 (1966) 766±778.

[21] M.E. Gurtin, A.C. Pipkin, A general theory of heat

conduction with ®nite wave speeds, Arch. Ration. Mech.

Anal. 31 (1968) 113±126.

[22] D.Y. Tzou, J.K. Chen, Thermal lagging in random media,

AIAA J. Thermophysics Heat Transfer 12 (1998) 567±574.

[23] C. Cattaneo, A form of heat conduction equation which

eliminates the paradox of instantaneous propagation,

Comp. Rend. 247 (1958) 431±433.

[24] P. Vernotte, Some possible complications in the phenom-

ena of thermal conduction, Comp. Rend. 252 (1961) 2190±

2191.

[25] J. Casas-V�azquez, D. Jou, Nonequilibrium temperature

versus local-equilibrium temperature, Phys. Rev. E 49

(1994) 1040±1048.

[26] K.S. Chiu, Temperature dependent properties and micro-

void in thermal lagging, Ph.D. Dissertation, University of

Missouri-Columbia, Columbia, Missouri, 1999.

[27] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flan-

nery, Numerical Recipes, Cambridge University Press,

New York, 1992.

[28] H.R.B. Orlande, M.N. �Ozisik, D.Y. Tzou, Inverse analysis

for estimating the electron±phonon coupling factor in thin

metal ®lms, J. Appl. Phys. 78 (1995) 1843±1849.

1734 D.Y. Tzou, K.S. Chiu / International Journal of Heat and Mass Transfer 44 (2001) 1725±1734


